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Abstract—We compare unstable parameter regions of a fluid delay product and buffer size. This makes it difficult to
approximation model of TCP and the correspondingns2 sim-  determine exactly which network parameters correspond to
ulations. We identify the parameter region corresponding to stable equilibria.

unstable equilibria of the fluid approximation model. Loss of | der to obtai licit stabilit diti
stability by the equilibrium typically leads to appearance of n oraer 1o obtain a more expliicit stability conadition we

periodic solutions. Simulations indicate that the aggregate TCP rewrite the stability inequality of [8] in a way that makes
stream also has two distinct regimes which can be described it clear that it is the ratio of the equilibrium free buffer

as stochastic (stable) and oscillatory (unstable). The geometry space to band-width delay product that determines therlinea
of the unstable regime parameter region disagrees substantially stability of the fluid model. Using the new form of the linear

with the unstable parameter region of the fluid approximation . ;. S L
model. The reason for the disagreement appears to be that the stability condition we prove that the equilibrium is lingar

oscillations in the fluid approximation model and in simulations Stable regardless of the bandwidth-delay product provided
have fundamentally different origins. We argue that a serious that the buffer is sufficiently small (less than 18 packets

revision of the fluid approximation model is necessary if it is according to our computations). Conversely, the equilifori
to accurately capture non-equilibrium TCP dynamics, such as s |inear stable regardless of the buffer size provided the
periodic solutions. bandwidth-delay product is small (less than 3 packets). In
general, the equilibrium of the fluid approximation model
considered is linearly stable if the bandwidth-delay pidu
Fluid approximation models of TCP have been studidd large compared to the buffer size.
extensively over the last 20 years. There are clear practicaWwith these results in hand we move onrts2 simulations.
benefits to having good mathematical models of TCP. Even rét- order to compare theoretical predictions with simulatio
atively simple networks with large numbers of sources chke taresults it is important to understand which limiting regime
a long time to simulate on reasonable time scales. Simglatithe fluid approximation model represents. The consensus in
multiple sets of networks conditions, involving combiats the literature is that it models the mean aggregate rate in
of varying buffer sizes, link bandwidths, and propagatiothe limit of infinitely many flows with identical (or nearly
delays, to find the optimal network parameters is prohiélyiv identical) round-trip times [6]. Rigorous results in thiseat-
time consuming. Therefore, accurate computationallytétsle tion, however, are scarce and make strong assumptions about
network models would be a great boon to network enginedfsw statistics [7], [6], [1]. Taking the correctness of thigw
as well as computer scientists designing networking paioc on faith, for the moment, we compare the results ns2
Fluid approximation models of the TCP network protocokimulations with fluid approximation model predictions and
which is responsible for carrying the bulk of Internet traffifind substantial disagreement in the geometry of the stable
today, are prototypical examples of this line of research. parameter region.
spite of the substantial literature on the equilibrium Endies Simulations were run with 1000 flows transiting a single
and stability of these models, however, there still appéars router, with round trip times uniformly distributed withih5%
be little understanding of how accurate they are, partibula interval about the mean. Buffer size and propagation delay
when it comes to stability, or even exactly what regime thayere varied to determine the affect of these parameters on
model. throughput and packet loss. To summarize, the simulatiten da
In this paper we compare one of the commonly used fluiddicate that buffer size more than bandwidth-delay produc
approximation models againes2 simulation data with focus determines the regularity and amplitude of oscillations in
on the question of equilibrium stability. This fluid apprexi transmission rate. Qualitatively the picture is somewlratlar
mation model of TCP was originally introduced by Kelly eto the results on the fluid approximation model, in that there
al. [2]. Since its introduction the model has been extemgiveappears to be a critical buffer size below which fluctuations
used to model multiple TCP sources in networks with arbjtrain transmission rate are largely random and uncorrelated an
topologies and heterogeneous delays (for example [§B]R], above which the fluctuations are nearly perfectly periotids
It is well known that the model has a unique equilibriumgritical buffer size depends albeit weakly on the bandwidth
which is easy enough to compute. Local and global stabifity delay product and likely on the number of flows, though we
the equilibrium have also been extensively studied. Fegdbalid not test the dependence on the later. Assuming that the
propagation delay makes even linear stability analysishef toscillations in transmission rate observed in simulatiansthe
equilibrium a non-trivial task and as a result the lineabtity  result of the limit cycle appearing in the fluid approximatio
condition for the equilibrium solution [8] has an implicitmodel there is a significant disagreement in the parameter
form with respect to the two model parameters — bandwidtkialues where the two appear. The greatest surprise, however

I. INTRODUCTION



stemming from the simulation data was non-monotonicity &gIMD are balanced and:(¢) = 0. Solving (1) with the left-

packet loss with respect to buffer size. This in our view s thhand side set to zero andt) = z we find that the equilibrium

clearest indication yet of the presence of multiple dynamttansmission rate is given by

regimes, already observed by [4], and of the limitationshef t -

considered fluid approximation model. o1 j20-p) @
The above discrepancies raise the question of what is it T p

that the model is missing and whether there may be som N iy _ -
parameter domain where the model is valid., Wﬁerep = p(z) is the equilibrium packet loss probability.

: ) To complete the model we take(t) = p(x(t)) = (1 —
_ne anwer 10 thedf'.rSt uestion appears 10 0° 108 SYNANITe) (/) /(1 — (/c)*1), which is the probability that an

nization. AS observed In [4], the insta ity in congest w1/ gueue with capacity is full. Since theoretical results

control manifests itself as synchronization between ﬂowabtained below are to be compared against simulation data,

which in turn, causes periodic oscillations in transmissiate. we remark at this point that the particular loss model dogs no

L)(Zssrisynnchr%nlzilltlor:mmiar:]s that a Izrgﬁ pro&ortloir;] c;f :LO\{'%%rrespond to simulated environment in that the interalri
EXperiences nearly simultaneous packet 1oss in a singie uand, certainly, service times in simulations are not neudgs

busy period. It |s_caused by the interaction between flowiseat texponentially distributed. We leave the question of aagyra

interaction exolicitly into account. The standard assii t%f the loss model for future research. The equilibrium sotut
plicitly ' 0Tt how is determined by the equation

in all fluid approximation convergence results is that lssse
for different flows occur independently and the arrival atne (1+2272/2)7" = p(2).
at the buffer is a sum of Poisson processes. Which in tur. _ . . . .
allows us to conjecture an answer the second question. EWS rewrite this in terms_of the dimensionless quantities of
conditions of loss independence and Poisson arrivals aye vi#2d:» = #/c, and bandwidth-delay product, = T,
negrly satisfied yvhgn b_uffer size is _bel_ow the critical vadtie (1+p%L2/2)7' = p(p), (3)
which synchronization induced oscillations set in. ) ) BB &
The rest of the paper is structured as follows. In Sectigi€re, abusing notation we now takep) = p=/> ;_; p
Il we lay out the TCP fluid model in the detail necessary fdtS it Will be through out the rest of the paper. It is likely ttha
the subsequent analysis. Section Ill contains theoretisalits ¢l0sed algebraic form fop in terms of L and B does not
derived from the fluid approximation model, followed byEXist. Nevertheless, using standard methods of controryhe
simulation results in Section V. In Section V we summariz# iS Possible to show [8] that the equilibrium solution islsie

our findings and discuss directions for future research, N linear approximation if

NN
[I. TCP FLUID APPROXIMATION MODEL p'/p<mL/2 4)

TCP uses a congestion window to control the maximumiherep’ = dp/dp(p) andp = p(p). (Our model corresponds
number of unacknowledged packets in transit. Precise dynai® the one considered in 5.1 of [8] with = 1/77 and 3 =
ics of the congestion window size are notoriously hard t6°/2.) The left-hand side of (4) is a complicated function
capture. For this reason a fluid approximation mirroring thef L and B, which obscures the exact relationship between
main features of TCP congestion control — additive-inceea®andwidth-delay produck, buffer sizeB and stability of the
multiplicative-decrease (AIMD) — is commonly studied in-equilibrium solution of (1).
stead. The fluid approximation aims to model the mean trans-
mission rate under the assumption that the number of packets . . o ) )
transmitted in a round-trip is large. The relationship ketw Ve begin by plotting the stability inequality (4) in the-
transmission rater and window sizeW is approximated 5 Plane. By a plot of the inequality we mean the plot of
by z(t) = W(t)/T, whereT is the round-trip link delay the set.where .equallty' holds, and WhICh is thus the b.oundary
and W (¢) is the congestion window size. The basic equatic?f the inequality solution set. Solving fak from (3) gives

IIl. THEORETICAL RESULTS

describing the mean transmission ratg) is then L = 1/py/2(1 — p)/p. Substituting this into (4) and moving
all the terms depending omto the left-hand side gives
iy = 2= DA=PE=T) L o 1), @) s
- T22(t) 2 p ’ P /P)VD/(1 = p) < 7/V2. (5)
wherep(t) € [0,1] is the fraction of the packets lost which isPlotting (5) with inequality replaced by equality in the
interpreted as an indicator of congestion [8]. B plane gives a plot as in Fig. 1. The figure suggests

In correspondence with TCP-Reno the first term in (1) givdge following observations about the linear stability of th
the additive increase df/1W per acknowledged packet, whileequilibrium solution.
the second gives the multiplicative decreaselpy for every 1) The equilibrium solution is linearly stable for all
unacknowledged packet. To complete the maggdé) must be provided B is sufficiently small.
given a specific form in terms af(¢), which we postpone for  2) For any fixed B the equilibrium solution is linearly
the moment. In equilibrium the two competing processes of  stable provided. is sufficiently large.
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B =1 and show that in this case the equilibrium is linearly
stable regardless of the bandwidth-delay productf B = 1
thenp(p) = p/(1 + p) andp’(p) = 1/(1 + p)?. Substituting
this into (3) givesp = 21/3/L?/3. Now stability inequality (4)
can be rewritten solely in terms df as

Ll/d/(22/5 + (2L2)1/3) < 7T/2

The maximum of the left-hand side is attainedat /2 and
so is 1/2v/2 which is less thanr/2. Hence the equilibrium
solution is linearly stable for any bandwidth-delay proidiic

A much better estimate can be obtained by expanding the
left-hand side of the stability inequality (5) in a Taylories
aboutp = 1 but the error estimates are quite cumbersome. This
more precise estimate givés® = 18 as the critical buffer size
at which instability may appear. The tip of the “nose” in the
inset of Fig. 4 corresponds tB8*.
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Fig. 1. Plot of (5) with inequality replaced by equality. Thset shows a Theorem 1. The equilibrium solution is stable in linear
blow up of the curve near the origin. approximation for any fixed3 if L is sufficiently large.

Proof: First, observe thap — 0 as L — oco. This can

The scale of the figure hides another part of the stabilitioreg be seen by considering solutignof the equilibrium equation
— a strip of roughly constant width that runs along tBe (3) as the intersection of the graphs of the right and leficha
axis. Part of this region is visible in the inset of Fig. 1. Fhisides with respect tp. The right-hand side is a monotonically
last observation is in agreement with the common knowledgeereasing function ofp and approaches 0 gstends to O.
that equilibrium solution is stable for links with small amgh The left-hand side is a monotonically decreasing functibn o
bandwidth-delay product [8]. p which converges to zero point-wise &stends to infinity.

Next we support each of the above observations wifkince the right-hand side does not depend.ahfollows that
analytic computations in the process deriving an intemgstithe intersection point of the two graphs converges to @ as
modification of the stability inequality. We begin by revimg tends to infinity.

the linear stability condition (4) in a more useful and imfar- Next, we evaluate the right-hand side of (6) lagends to
tive form. Derivative ofp with respect top can be rewritten infinity. Multiplying both sides of equilibrium equation Yy
as T givesW = v/2,/(1 — p)/p. Sincep — 0 asL — oo, W
(p) ZB Jeok () diverges ad. increases. The left-hand side, on the other hand,
p'(p) =—= <B —— P ) N (B-Q) is bounded above bys. Hence the equilibrium solution will
P > ko PF p be linearly stable for all sufficiently large. ]
whereQ is the expected queue length at the buffer when the TO test whether instability is really intermittent ib we
load is p. Substituting this into (4) we get solved the delay differential equations (1) using NDelayD-
. R Solve Mathematica package. The stability criterion, adteris
B—Q < (n/2)pL = (7/2)W (6) only a sufficient stability condition and does not say anyghi
where T and Q are the equilibrium congestion window size2Pout existence of unstable equilibrium solutions. Figh@vs
and buffer queue size respectively. plots of numerical solutions to (1) faB = 25 and increasing

Stability inequality (6) shows that linear stability of thevalues ofL. The low and the high values df (plots (a) and
equilibrium solution is determined by the amount of the fref€)) converge to steady state equilibria, while the plottfue
buffer space relative to the window size in equilibrium. Théitermediate value of (plot (b)) settles down to oscillations
reason for this appears to be that increasing buffer sizesri @00ut the equilibrium, indicating that the equilibrium wtibn
the equilibrium load closer to 1 and simultaneously incesasiS Not stable.
sensitivity of the system near= 1 by increasing’/p. Notice

. : : P IV. SIMULATION RESULTS
thatp’ /p has a singularity gt = 1 in the limit of infinite buffer

size. Supposing that the fluid approximation models transmission
N ] rate in the limit of infinite number of identical flows, we
A. Stability for small buffer size compare the above theoretical results wig2simulation data.

Estimates required to obtain a strong lower bound on tlxperimenting with different numbers of flows we converged
buffer size at which instability may appear are too long f@ t on 1000 as a number that is large enough for aggregate
current exposition. Instead we restrict our attention ®dhse behavior to emerge but at the same time small enough that
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Fig. 3. Network layout.
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10 /\/A\/A\/AVAV/\VAVAV N AVAVAVAYAYAYAYAYAYAYAYAYAYAYAYSYAY: make the fluid approximation reasonable. This left pregisel
two parameters — the propagation delay and buffer size of

0.8l the n1-n0 link, which correspond td" and B parameters of
the fluid model 1 respectively. Each simulation ran for 100s o

0.6f simulated time but the first 10s were then discarded to avoid
contamination of data with transient effects.

o4 Figures 4 summarize the simulation data. The plots show

throughput, goodput and packet loss as functions of buffer

size B for values of the propagation del@yranging between

‘ ‘ ‘ ‘ ‘ ‘ 100ms and 500ms in 100ms increments.

(b) 100 200 300 400 500 600 The packet loss plot immediately stands out because of the
X0 counter-intuitive non-monotonic shape of the loss cur@éan-

dard queuing theory intuition would suggest that the packet

0.2r

0.8l loss should decrease exponentially with increasing buffer
size, and this is indeed what happens when buffer sizes are
el relatively small. TCP congestion control mechanism, hawev

adjusts the transmission rate based on packet loss feedback
which throws a wrench into the gears of the . For each fixed
propagation delay the decreasing packet loss trend revatse
some critical buffer size3.(T") and the packet loss increases
over a range of buffer sizes before resuming its downward
trend. What is the cause of this odd behavior? Looking more
© 00 200 300 200 500 st  Closely at the data, by examining the time series of the mean
aggregate transmission rate (measured as the packetl arriva
Fig. 2. Numerical solutions of (1) wittB = 25 initial condition p(t) = rate at th_e rOUter? f_or buffer sizes IeSS_ than and_ greater tha
p+.1on[-T,0] and (aL = 3 (b)L = 6, (c)L = 30. The equilibrium Bc(T') (Figure 5) it is easy to see the likely proximate cause
solution is shown in blue. of the reversal. The obvious difference between the two time
series is the presence of periodic oscillations for buffees
greater thanB.(T).
a simulation can be run in reasonable time (on average a fewrhe reason for this dichotomy is that the system operates
hours for 100s of simulated time). in two fundamentally different regimes depending on whethe
The network topology used in simulations was is in Figur8 < B. or B > B.When B < B, the buffer is not big
IV. The propagation delays of the access links are randondynough to accommodate the bursts arising on the short time
uniformly distributed in the range between 0 and about 10%tale from "piling up” of packets due to the differences in
of the propagation delay on the main linkl to n0. This the round-trip times and back to back packets resulting from
relatively small random component is added to the magongestion window increases. This means that losses occur
propagation delay on thel-n0 link to avoid periodicity that before the aggregate source rate saturates the link, aehes
develops when packet transmission times lock into a fixelde capacity of the router. A large proportion of flows is,ghu
pattern. Additional randomization is introduced by stagti unlikely to suffer simultaneous losses because the bufier ¢
flows at random times uniformly distributed within the firsbegin to clear immediately following the burst. The lossrese
second of the simulation. The router capacity was set to 4Gbémain largely independent within and across flows on thg lon
so that a typical congestion window size was large enoughttme scale.
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If B > B, the buffer is big enough to absorb short Fig. 6. Relative error in the fluid approximation equilibricthroughput.
time scale bursts and the sources can saturate the link. This
increases the length of buffer busy periods because therbuff
usually will not be able to start clearing until all the patske significantly smaller than router capacity. With this thefeu
that have entered the link following the saturation pointeha Will finally begin to clear and then the cycle repeats.
left the system by either being processed or dropped. Thisincreasing the buffer size increases the duration of theeabo
number, of course, can not be greater than the bandwid@ycle because larger buffers take longer time to fill. Since
delay product plus buffer size and so the buffer busy perigédch flow on average increases its congestion window by 1
cannot exceed + B/c. The longer the busy period the morepacket per round trip time the buffer takes roughlyz /N
flows are likely to lose packets during it. When a large numbg&geconds to fill, whereV is the number of flows (1000 in our
of flows experience simultaneous losses a drastic drop dase). So the period between consecutive buffer overflows is
the aggregate transmission rate occurs as the flows cut thg@portional to the buffer size. At the same time the duratib
congestion windows in sync. Since the aggregate congestibg busy period remains relatively constant, at least/if <<
window cannot exceed the bandwidth-delay product by mote Therefore, as the number of packets sent in a cycle grows
than B, which in our simulations is small compared withcompared with the number of packets dropped in during the
the bandwidth-delay product, after the decrease the aggredousy period the fraction of lost packets starts to declingirag
congestion window will be significantly smaller than thén agreement with graphs in Figure 4(c).
bandwidth delay product and the aggregate transmissien ratComparing these results with fluid approximation model
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makes predictions of instability derived by linear anayfsom
fluid approximation model questionable. The main cause-of os
cillations in the aggregate TCP transmission rate in sitrara

is loss synchronization between flows which is not modeled
by the fluid approximation model we consider or any other
fluid approximation model, as far as we know. This suggests
that if the fluid approximation is to be used for more than

computing the equilibrium throughput this collective beiba

‘ : : = B/N (pkts) must be included in the model.
05 1.0 15 2.0
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If we take theB < B, regime to be stable an® > B,

to be unstable, then the plot &.(7") shows, that as regards

instability, the agreement between theory (Figure 1) ameex

iment (Figure 1V) is very far from perfect indeed. Although,

there is some general qualitative agreement between the two

graphs the degree of quantitative disagreement raises the

guestion whether this agreement is anything more than pure

coincidence. It becomes doubly unlikely when one considers

that the parameter region where the fluid approximation make

the most accurate equilibrium predictions is actually the o

where it is least likely to be dynamically correct because it

does not take into account the effects of loss synchrooizati

And this the key point: the oscillations in fluid approxinati

model and the oscillations observednig2 simulations appear

to have different origins. The former caused by the intgrpla

of delay and buffer size the later by loss synchronization.

V. CONCLUSION

We deduced the parameter region corresponding to linearly
unstable equilibria of the fluid approximation model. Inter
preting the fluid approximation as the infinite-flow limit we
compare theoretical predictions with simulation resudts &
range of parameter values. Simulation results indicaté tha
TCP congestion control has two distinct operating regimes
whose choice is determined by the buffer size. Since one
of the regimes exhibits periodic oscillations while the esth
does not, it is reasonable to consider them as unstable and
stable respectively. The critical buffer size separatimg tivo
operating regimes varies with bandwidth-delay productnimit
in the way predicted by the fluid approximation model, which



